Investigations into Socket 939 Athlon 64 Overclocking
by Jarred Walton on October 3, 2005 4:35 PM EST- Posted in
- CPUs
Power Supply
Despite what manufacturers might want you to believe, power supplies are less about wattage and more about the amount and quality of current that they can supply. In theory, the Watts rating of a PSU can be determined with the current and voltage ratings. Using the equation P = I x V (Power = Current x Voltage), you can come up with a Wattage for each voltage that the PSU provides, add them all together, and you have the rating. Simple enough, right? Unfortunately, there are problems with this method of rating a power supply.
The biggest problem is that PCs don't require equal amounts of power from each voltage, and the wattage rating simply serves to obfuscate the real power levels. The +12V rating is generally the most important rating, and modern ATX2.0 PSUs actually require two +12V rails (i.e. outputs form the PSU). Two 500W PSUs from different manufacturers could actually have wildly different characteristics in the type of power that they provide. In a really bad PSU, reality can be further distorted by providing high output ratings on the -5V and -12V lines. Computers draw very little power from the negative lines, so if a PSU were to rate the -12V line at 3A instead of a more common 1A (or less), they can inflate their wattage by 25W or more. As if that isn't bad enough, there are even more ways to "cheat" the rating.
Temperature plays a role in determining the output capacity of a power supply. You can read about it elsewhere, but the main concept is the following: "The thermal capacity of materials changes slightly with temperature primarily due to changes in density." Part of what allows a power supply to provide current at a specific voltage is the ability to transform the 115V input from the wall (or 230V in other areas of the world) to a different value. Such a change creates heat, and the heat has to be dissipated. Inside a power supply, you will find heat sinks much like what you see on a motherboard, along with a cooling fan or fans. Depending on how the power supply is rated, it might actually provide 450W at 10 degrees C and only 375 W at 30 degrees C. (You'd have to know the specific heat values for the various materials inside a PSU to really be able to calculate how temperature affects the output capacity for a specific PSU.) Nearly all modern computers will have a case temperature in the 30 degrees C or higher range, so a PSU rated using 10-25 degrees C values is far from a realistic representation of the PSU's output capacity.
Lastly, just because a power supply can provide a specific output doesn't mean it can do so well. In the US, power from the wall outlets comes at 115V, but variance is allowed. In fact, the output voltage can fluctuate between 110V and 121V (5%) while still being within spec. That may be fine for some household items like lamps and coffee makers, but computers tend to be a little more demanding in their requirements. A power supply that outputs 3.2V, 4.8V, and 11.5V is still technically within the required range, and there's a good chance that it will work with a typical PC. What really causes problems are fluctuations, which are usually influenced by the use of lower quality components as well as temperature changes. Even though a PSU might work in a regular PC, though, overclocking really pushes things to the limit, and it's far better to have a PSU that can output voltages exactly at spec than a few percent high or low.
One of the easiest ways to determine the quality of a power supply is to simply pick it up. A 500W power supply should weigh quite a bit more than a 350W power supply; if it doesn't, be suspicious. Reading the label on a power supply can be helpful, but that doesn't usually tell you the temperature at which it was tested, and of course, it could always be inaccurate. The saying "you get what you pay for" also applies, so if a PSU costs far less than the rating would suggest, it's likely that the unit isn't really as good as the sticker claims. A better idea is to just go with a respected name, as we suggested with motherboards. Our top picks for PSU manufacturers are Antec, Enermax, Fotron Source, OCZ, and Seasonic. Enermax, OCZ and Seasonic are probably the safest bets, as they don't really have "value" and "performance" parts right now, though the more expensive Antec and Fotron Source units are just as good. If you want a high quality power supply and you're shopping online, here's the fastest test: does it cost less than $75? If so, it's probably a moderate unit, and under $50 is an inexpensive unit. The good power supplies almost always cost $80 or more. If you're not sure, though, ask around! Some times, there are good deals to be had on high quality power supplies.
We're using an OCZ PowerStream 600W power supply for our system. There are bigger, better power supplies out there for extreme overclocking, but they cost a lot more. We're not going to be playing with liquid nitrogen or even phase change cooling, so the 600W OCZ is more than sufficient. With adjustable voltages and a dual 20A +12V rails, we have everything that we need from a quality power supply.
With all the above talk about getting a quality power supply, we also ran some tests using a cheap PSU that came with an even cheaper case. The case was the MGE and 400W PSU that we recommended in our last Budget Buyer's Guide. The case is flimsy, made of thin aluminum, and the cables for the front USB and Firewire ports were very difficult to work with - they were separated into single-pin connectors rather than a block of pins. It's impossible to say what the long-term reliability of such a case is, but it's been running nearly 24/7 for a couple of months now without any problems. The highest overclocks seemed a bit less stable with the 20-pin power connection, but we did manage to match the overclock of the OCZ PowerStream 600W. Maximum power draw for the test configuration was measured at around 220W, so we never came close to the 400W power rating.
Despite what manufacturers might want you to believe, power supplies are less about wattage and more about the amount and quality of current that they can supply. In theory, the Watts rating of a PSU can be determined with the current and voltage ratings. Using the equation P = I x V (Power = Current x Voltage), you can come up with a Wattage for each voltage that the PSU provides, add them all together, and you have the rating. Simple enough, right? Unfortunately, there are problems with this method of rating a power supply.
The biggest problem is that PCs don't require equal amounts of power from each voltage, and the wattage rating simply serves to obfuscate the real power levels. The +12V rating is generally the most important rating, and modern ATX2.0 PSUs actually require two +12V rails (i.e. outputs form the PSU). Two 500W PSUs from different manufacturers could actually have wildly different characteristics in the type of power that they provide. In a really bad PSU, reality can be further distorted by providing high output ratings on the -5V and -12V lines. Computers draw very little power from the negative lines, so if a PSU were to rate the -12V line at 3A instead of a more common 1A (or less), they can inflate their wattage by 25W or more. As if that isn't bad enough, there are even more ways to "cheat" the rating.
Temperature plays a role in determining the output capacity of a power supply. You can read about it elsewhere, but the main concept is the following: "The thermal capacity of materials changes slightly with temperature primarily due to changes in density." Part of what allows a power supply to provide current at a specific voltage is the ability to transform the 115V input from the wall (or 230V in other areas of the world) to a different value. Such a change creates heat, and the heat has to be dissipated. Inside a power supply, you will find heat sinks much like what you see on a motherboard, along with a cooling fan or fans. Depending on how the power supply is rated, it might actually provide 450W at 10 degrees C and only 375 W at 30 degrees C. (You'd have to know the specific heat values for the various materials inside a PSU to really be able to calculate how temperature affects the output capacity for a specific PSU.) Nearly all modern computers will have a case temperature in the 30 degrees C or higher range, so a PSU rated using 10-25 degrees C values is far from a realistic representation of the PSU's output capacity.
Lastly, just because a power supply can provide a specific output doesn't mean it can do so well. In the US, power from the wall outlets comes at 115V, but variance is allowed. In fact, the output voltage can fluctuate between 110V and 121V (5%) while still being within spec. That may be fine for some household items like lamps and coffee makers, but computers tend to be a little more demanding in their requirements. A power supply that outputs 3.2V, 4.8V, and 11.5V is still technically within the required range, and there's a good chance that it will work with a typical PC. What really causes problems are fluctuations, which are usually influenced by the use of lower quality components as well as temperature changes. Even though a PSU might work in a regular PC, though, overclocking really pushes things to the limit, and it's far better to have a PSU that can output voltages exactly at spec than a few percent high or low.
One of the easiest ways to determine the quality of a power supply is to simply pick it up. A 500W power supply should weigh quite a bit more than a 350W power supply; if it doesn't, be suspicious. Reading the label on a power supply can be helpful, but that doesn't usually tell you the temperature at which it was tested, and of course, it could always be inaccurate. The saying "you get what you pay for" also applies, so if a PSU costs far less than the rating would suggest, it's likely that the unit isn't really as good as the sticker claims. A better idea is to just go with a respected name, as we suggested with motherboards. Our top picks for PSU manufacturers are Antec, Enermax, Fotron Source, OCZ, and Seasonic. Enermax, OCZ and Seasonic are probably the safest bets, as they don't really have "value" and "performance" parts right now, though the more expensive Antec and Fotron Source units are just as good. If you want a high quality power supply and you're shopping online, here's the fastest test: does it cost less than $75? If so, it's probably a moderate unit, and under $50 is an inexpensive unit. The good power supplies almost always cost $80 or more. If you're not sure, though, ask around! Some times, there are good deals to be had on high quality power supplies.
We're using an OCZ PowerStream 600W power supply for our system. There are bigger, better power supplies out there for extreme overclocking, but they cost a lot more. We're not going to be playing with liquid nitrogen or even phase change cooling, so the 600W OCZ is more than sufficient. With adjustable voltages and a dual 20A +12V rails, we have everything that we need from a quality power supply.
With all the above talk about getting a quality power supply, we also ran some tests using a cheap PSU that came with an even cheaper case. The case was the MGE and 400W PSU that we recommended in our last Budget Buyer's Guide. The case is flimsy, made of thin aluminum, and the cables for the front USB and Firewire ports were very difficult to work with - they were separated into single-pin connectors rather than a block of pins. It's impossible to say what the long-term reliability of such a case is, but it's been running nearly 24/7 for a couple of months now without any problems. The highest overclocks seemed a bit less stable with the 20-pin power connection, but we did manage to match the overclock of the OCZ PowerStream 600W. Maximum power draw for the test configuration was measured at around 220W, so we never came close to the 400W power rating.
101 Comments
View All Comments
edlight - Tuesday, January 3, 2006 - link
I've found a way to overclock and retain the Power Now/Cool'n'Quiet.I let the motherboard do it's Cool'n'Quiet thing but I don't load the AMD driver. I run CrystalCPUID, which lets me set up the multiplier and voltage of each of the 3 cpu steps.
The voltage setting of the motherboard, for my Gigabyte, has to be on Auto for Crystal to be able to change it.
The highest Crystal can go with my 1.4v 3000+ Winnie is 1.45v.
This let me take it up to 3800+ -- a speed of 2.4. 240 x 10.
So it's running at 1.2 -- 240 x 5 -- most of the time. I set it at 1.2v there and froze it there and p95'd it overnight, as I did to the other 2 speeds.
For me this is a great compromise between running "cool 'n quiet" and high performance.
It's only a small percentage speed jump to 2.6, but requires alot of voltage and heat.
I can't say what the maximum voltage would be for a Venice. Crystal lets me choose higher voltages than 1.45, but it doesn't actually set them.
RaulAssis - Wednesday, December 21, 2005 - link
Some people reported that the Cool 'n' Quiet feature could work in a OC system. Maybe not all bioses support correct scaling of voltages when the system is OC and the Cool 'n' Quiet feature is turned on.JarredWalton - Wednesday, December 21, 2005 - link
With any moderate OC, CnQ is going to cause problems. It dynamically adjusts multipliers and voltages... something that will usually screw up an overclocked system. I would strongly discourage trying to use CnQ with an OC'ed setup. Some motherboard BIOSes actually disable CnQ automatically if you enable overclocking features.mrmoti - Wednesday, November 30, 2005 - link
If I understand correctly:Performance RAM running at DDR400 2-2-2-8 and Value RAM running at DDR400 2.5-3-3-8
At same OC on the processor, Performance RAM outperformed the Value RAM by 5% to 10%, being the price something between 80% to 100% more.
So, what's the impact of runnig faster memory at high lateny? Say DDR500 at 3-4-4-8
Because looking at the table of estimated latencies, (Performance) DDR400 2-2-2-5 has an estimated latency of 46.5, where (Value) DDR400 2.5-3-3-7 has an estimated latency of 49.75, an improve of 6.5% being in the range of 5% to 10% better.
By the same table, DDR500 3-4-4-8 has an estimated latency of 42.4, an improvement of 8.8% over the Performance DDR400 and 14.7% over the Value DDR400, based only in latencies.
Can anybody run a benchmark confirming/denying this?
Being the case that the price of DDR500 with those timings is in the middle between Performance and Value RAM
T Rush - Sunday, October 16, 2005 - link
One of the main focuses of this article seems to be value -vs- performance RAMs when over clocking, but you chose to run the performance RAM at settings where is doesn't perform, shame on you Jarred Walton, very disappointedIf you look at the settings you used to test the two RAMs at...
http://images.anandtech.com/reviews/cpu/amd/athlon...">http://images.anandtech.com/reviews/cpu...niceover...
...you see that the MAX speed you where able to run the OCZ Rev2 at was not in it's "performance envelope", as the OCZ Rev2 is one of the worst performers in this speed range http://www.anandtech.com/memory/showdoc.aspx?i=256...">http://www.anandtech.com/memory/showdoc.aspx?i=256... <OCZ Rev2 at 266MHz, and all the other "performance RAMs" beat it
But if you look at how the OCX Rev2 does work at much higher speeds, where it does perform...
http://www.anandtech.com/memory/showdoc.aspx?i=256...">http://www.anandtech.com/memory/showdoc.aspx?i=256...
...you find that it is performing much differently than what you tested at, and would have shown a much larger performance lead over the value RAM
How did you get this on to Anandtech? How could you show such a bad comparison of value -vs- performance RAM on a site which has always shown so much information about how these RAMs perform?
I not only blame you, but also the editors for not catching how badly you have managed to make performance RAM look. It is clear you were trying to prove that cheap RAM can falsely perform as well as high-end performance RAMs. If you truly wanted to show what performance RAM can do when over clocking you either needed to run the OCZ Rev2 at much faster speeds, or use a different performance RAM that works well at the sub 270MHz speeds you tested at.
JarredWalton - Sunday, October 16, 2005 - link
This is one set of RAM run through extensive tests on one platform. I've seen the same RAM run faster in some other systems, but not a whole lot. Just because some DIMMs reach DDR636 doesn't mean that all of them do. I could run this RAM at 3-4-4-8-2T timings at DDR600, but it actually ran worse than 2.5-3-3-8-1T with the lower memory ratio.What is clear is that I wasn't trying to "prove" anything. I was running some comparison tests with a system using two different types of RAM, and I'm sorry that you don't like the results. What I did prove was that someone one a budget could build a very fast system. An FX or San Diego core with higher quality RAM and a better motherboard would be better overall, but price/performance it would get stomped by this <$1000 setup.
T Rush - Monday, October 17, 2005 - link
I don't find the OCZ Rev2 to be a good example of the high performance RAM everyone thinks it is, as it doesn’t perform well at the speeds you (and most everyone else) use…not compared to other good over clocking RAMsGranted some of the other performance RAMs do cost much more than the value RAMs, and even more than the OCZ Rev2, but they would have shown a greater performance difference than the value RAM which in your tests was not able to run any faster than its stock rated speeds or timings
Your testing shows that running RAM at faster speeds adds very little performance over stock speed value RAM, and that is because the timings/speed relationships of that peculiar performance RAM at those peculiar higher speeds were not good.
As I said before, all the other performance RAMs beat it, and perform much better at speeds under 270MHz than the OCZ Rev2 does
Using the right RAM at the right speeds to run the best timings is the true art to over clocking, as RAM timings and speeds can allow the AMD64 to perform at much higher levels when over clocked
I do not disagree with your results, as that is how those RAMs perform:
Value RAM only being able to run its rated speeds and timings, not being able to over clock at all.
OCZ Rev2 running at higher speeds but with such bad timings that it shows very little performance gains unless you are able to run it at CAS 2.5 in the 300MHz range
I am not a fan of the OCZ Rev2 because of this, but I am a fan of performance RAM over value RAM, even on a budget system.
If you read clue22’s reply “so basically what the everybody is saying about the value RAM vs. low latency more expensive RAM is that for the athlon 64 it is basically a waste of money (i.e. you only get about 5% performance gain), but usually spend 100% or more money to get the "better" RAM.”
…and cyptonomicon’s “and its nice to see those ram comparisons. good to see those results on the latest a64 platform and confirm once again that the ram makes only a few percentage points difference”
…next intellon’s “I understand how/why the memory quality is not too imoprtant (5-9% increase for 100 bucks = not worthy)”
Clearly by using the OCZ Rev2 you did not show what spending a little bit more for better performing RAM can do. You have shown that running RAM at speeds with timings where it doesn’t perform well is a waste of money, but this does not answer any questions about value -vs- performance RAM
JarredWalton - Monday, October 17, 2005 - link
I've got X2 benchmarks with four different types of RAM in the works:OCZ VX
OCZ Plat Rev2 (TCCD)
Mushkin Value
PDP 2x1GB 2-3-2-5-1T
Other than the fact that 2GB of RAM helps out certain tasks (BF2 load times!), the total performance difference with those configurations is still not huge. With a 3.5V RAM voltage, the VX would do better, but even then the difference isn't above 10%.
T Rush - Thursday, October 20, 2005 - link
for a budget system I would say the socket 754 is better...as the motherboards and CPUs are cheaper...and you can get ClawHammer CPUs with the larger performance 1MB L2 cachethe only thing you miss out on with the 754 is the dual channel memory mode(which only adds very little performance anyway)...but by over clocking the core:memory speed you can easily match the performance gained by the greater bandwidth of the dual channel mode (this could be why the socket 939 doesn't show large gains from overclocking with the memory 'in-sync'..as it can't use all the bandwidth the faster memory gives)
with a mid-range system you could pick a 10X multi 3200+ Venice, or even a 11X multi 3500+ Venice(either of those would have a much better CPU multi for overclocking than the 3000+'s 9X multi) which would allow you to keep the HTT/HTL speed at a more reasonable level(270MHz and 245MHz to reach 2.7GHz CPU speed...where a 9X multi CPU would need a 300MHz HTT speed to run the CPU that fast)
...but the 3200+ and 3500+ are costing $190 to $250...so for not much more you could have a performance San Diego core on the 939 platform (3700+ 11X multi SD is only $267 now)
...so for $80 to $40 more I would go for the larger San Diego core...I would also spend the ~$20 more for CAS 2 RAM (over $90 Value RAM)...thats like just $100...for a computer with much better parts...and say you use this system for 18 months, that works out to less than $6 a month for a using higher quality parts
Deathcharge - Saturday, October 15, 2005 - link
Jarred this was a great article and did come at a great time as i am in the market for buying a bang for the buck system. One thing you didnt mention (although i saw that in the CPU-z screen shots) is the CPU steppinghttp://www.amdcompare.com/us-en/desktop/default.as...">http://www.amdcompare.com/us-en/desktop/default.as...
the 3200+ venice core comes in 3 different stepping and i belive the one you used in your article is the E3 stepping which is being replaced with the E6 stepping. Any info on how well the new stepping OC? initial reports from around the net indicate that it doesnt OC very well for some reason would love to read your comments on this.
Do you know if it is possible to OC to 2500 or 2600O with stock HSF as i would really like to save the money spent on the TT-90 and get a 7800GT (as opposed to x800xl). one final thing would OCZ value VX require active cooling?
thanks and keep up the good work, really enjoyed reading it and would look forward to future articles