Last week Intel introduced its highly anticipated Lynnfield processors under the Core i5 and Core i7 brands. Three chips emerged:
Processor | Clock Speed | Cores / Threads | Maximum Single Core Turbo Frequency | TDP | Price |
Intel Core i7-975 Extreme | 3.33GHz | 4 / 8 | 3.60GHz | 130W | $999 |
Intel Core i7 965 Extreme | 3.20GHz | 4 / 8 | 3.46GHz | 130W | $999 |
Intel Core i7 940 | 2.93GHz | 4 / 8 | 3.20GHz | 130W | $562 |
Intel Core i7 920 | 2.66GHz | 4 / 8 | 2.93GHz | 130W | $284 |
Intel Core i7 870 | 2.93GHz | 4 / 8 | 3.60GHz | 95W | $562 |
Intel Core i7 860 | 2.80GHz | 4 / 8 | 3.46GHz | 95W | $284 |
Intel Core i5 750 | 2.66GHz | 4 / 4 | 3.20GHz | 95W | $196 |
We tested exclusively with the Core i7 870 and the Core i5 750, the 860 didn't arrive in my lab until after the review went live. I was spending the greater part of a week with AMD at that time and didn't get to testing until this past weekend. Here's the chip:
What makes the Core i7 860 so interesting is that it's priced on par with everybody's favorite Nehalem: the Core i7 920. The 870 has great turbo modes, but it's nearly twice the price of the 860. The Core i5 750 wins in the price department, but it lacks Hyper Threading - part of what makes Nehalem so tasty in the first place. The 860 effectively gives us the best of both worlds, hence the focus on it for today's review.
I had a few mistakes in my original version of this table, but below you can see the turbo modes offered by the 860. They're not quite as nice as the 870, but the chip is also half as expensive. You'll also see that like the 750 you only get a single bin improvement with 3 or 4 cores active, but like the 870 you get 4 and 5 extra speed bins in the dual and single active core situations:
Max Speed | Stock | 4 Cores Active | 3 Cores Active | 2 Cores Active | 1 Core Active |
Intel Core i7 870 | 2.93GHz | 3.20GHz | 3.20GHz | 3.46GHz | 3.60GHz |
Intel Core i7 860 | 2.80GHz | 2.93GHz | 2.93GHz | 3.33GHz | 3.46GHz |
Intel Core i5 750 | 2.66GHz | 2.80GHz | 2.80GHz | 3.20GHz | 3.20GHz |
I've explained turbo mode in great detail here. In short, Lynnfield's PCU (Power Control Unit) looks at the number of cores active, shuts down those that are inactive, and uses the thermal savings to boost the clock speed of the active cores - all within the operating specs of the processor. Unless you're overclocking, turbo will never compromise system stability in search of greater performance.
Single Core | Dual Core | Quad Core | Hex Core | |
TDP | ||||
It works very well in practice, particularly with Windows 7. A question that's come up since the initial review is what happens when background tasks kick in. As I mentioned in the "Speed Limits" section of the Lynnfield review, this is something that can prevent turbo from kicking in:
"There's also the issue of background threads running in the OS. Although your foreground app may only use a single thread, there are usually dozens (if not hundreds) of active threads on your system at any time. Just a few of those being scheduled on sleeping cores will wake them up and limit your max turbo frequency (Windows 7 is allegedly better at not doing this)."
One of the features of Windows 7 is that the OS supposedly does a better job of grouping tasks together on a single core to avoid waking up an adjacent core and negating the gains from turbo mode. I'm still working on finding a good way to measure this but from what I've seen initially, Windows 7 tends to do a good job of grouping threads onto one or two cores - meaning we tend to see the 4-bin or 5-bin turbo modes. The other thing to keep in mind is that the processor can turbo up/down faster than the OS can schedule threads, the benefits of turbo are present even while in the middle of executing a task. Remember what dictates turbo is both thermal dissipation and current consumption; the mix of instructions executed varies depending on the task and even during the task, which in turn varies the frequency your core(s) will run at.
The end result is a system that seems to feel more responsive as well as perform better. Of course none of this matters if you're going to be disabling turbo and just overclocking, but I've addressed that scenario in a separate article today :)
And I don't really have a reason for showing this, but I like tables so here's the current quad-core processor landscape:
Processor | Manufacturing Process | Die Size | Transistor Count | Socket |
AMD Athlon II X4 | 45nm | 169 mm2 | 300M | AM2+/AM3 |
AMD Phenom II X4 | 45nm | 258 mm2 | 758M | AM2+/AM3 |
Intel Core i7 (Bloomfield) | 45nm | 263 mm2 | 731M | LGA-1366 |
Intel Core i5/i7 (Lynnfield) | 45nm | 296 mm2 | 774M | LGA-1156 |
Intel Core 2 Quad Q8xxx | 45nm | 164 mm2 | 456M | LGA-775 |
The Test
Motherboard: | Intel DX58SO (Intel X58) Intel DP55KG (Intel P55) Intel DX48BT2 (Intel X48) Gigabyte GA-MA790FX-UD5P (AMD 790FX) |
Chipset: | Intel X48 Intel P55 Intel X58 AMD 790FX |
Chipset Drivers: | Intel 9.1.1.1015 (Intel) AMD Catalyst 8.12 |
Hard Disk: | Intel X25-M SSD (80GB) |
Memory: | Qimonda DDR3-1066 4 x 1GB (7-7-7-20) Corsair DDR3-1333 4 x 1GB (7-7-7-20) Patriot Viper DDR3-1333 2 x 2GB (7-7-7-20) |
Video Card: | eVGA GeForce GTX 280 |
Video Drivers: | NVIDIA ForceWare 180.43 (Vista64) NVIDIA ForceWare 178.24 (Vista32) |
Desktop Resolution: | 1920 x 1200 |
OS: | Windows Vista Ultimate 32-bit (for SYSMark) Windows Vista Ultimate 64-bit |
121 Comments
View All Comments
blyndy - Saturday, September 19, 2009 - link
Intel Core i7 920214 / $284 = 0.75 SYSmarks per $
Intel Core i7 870
233 / $562 = 0.41 SYSmarks per $
Intel Core i7 860
223 / $284 = 0.79 SYSmarks per $
Intel Core i5 750
217 / 196 = 1.11 SYSmarks per $
AMD Athlon II X4 620
147 / 99 = 1.48 SYSmarks per $
yacoub - Saturday, September 19, 2009 - link
Your prices are wrong. The 860 is $230, which makes it 0.97 SYSmarks per $.The 750 is $160, which means 1.36 SYSmarks per $ by your measurement.
johnsonx - Saturday, September 19, 2009 - link
I just love it when someone quotes some below cost, loss-leader sale price they heard about somewhere once to prove a value arguement.yacoub - Saturday, September 19, 2009 - link
You mean "on-going, still valid sale prices that you can get today".stanljl - Wednesday, September 23, 2009 - link
Most of the US doesn't live reasonable close to the 21 cities that have microcenters. In cause you haven't looked there really aren't that many locations so "on-going, still valid sale prices you can get today", really doesn't apply to the vast majority of the people in the country.strikeback03 - Monday, September 21, 2009 - link
It is a valid price, but please add the disclaimer "If you have a microcenter nearby" instead of just pretending those are widely available prices. I plan on buying a processor when I help my parents move down near Philly next month, otherwise I (like most) don't have a Microcenter anywhere nearby.formulav8 - Saturday, September 19, 2009 - link
Yeah with only 2% of the people able to get one at near that price. Quoting an obvious loss leader as valid pricing for those looking it nutty. Newegg or ZZF is a much better gauge of price.NA1NSXR - Saturday, September 19, 2009 - link
Who cares, let him pay up. Nothing on P55 has made me regret getting that $200 D0 920. Nothing. Not even close. The OC, heat, and platform pricing advantages all failed to materialize.The 920 is not a 2.66Mhz bloomfield. It is a 3.8GHz chip supporting the fullest featured consumer platform at the moment.
kilkennycat - Saturday, September 19, 2009 - link
Where? Where? Where? From a reputable supplier and with in-stock delivery, of course.Newegg and ZipZoomFly: 860 $299
850 $199
mgivler - Monday, September 21, 2009 - link
Microcenter, for in-store purchase. I purchased an i7 860 last week for $229. The i5 750 is cheaper, $159 seems right.