Intel's Atom Architecture: The Journey Begins
by Anand Lal Shimpi on April 2, 2008 12:05 AM EST- Posted in
- CPUs
2-Issue and In-Order: Intel's Version of the Cell's PPE
The Austin design team started with a single-issue in-order core but quickly expanded it to be a superscalar, 2-issue design, in other words it is capable of sending up to two instructions down the pipeline at the same time. By comparison most desktop x86 microprocessors are 3 or 4-issue designs.
In order to feed the 2-issue machine, Intel equipped Atom with two decoders. These decoders take instructions fetched from the L1 instruction cache and sequence the series of 1s and 0s into figuring out what the instructions are telling the CPU to do. While the decoders are equal in their ability to decode instructions, there are two paths that an instruction may take: slow and fast.
In the earlier days of the x86 ISA (Instruction Set Architecture) many complained about its support for variable length instructions.
If I tell you that I'm going to give you 2 oranges every 10 seconds, your job becomes much easier than if I tell you that I'm going to give you somewhere between 1 and 3 oranges every 10 seconds. The former would be an example of a fixed length instruction set and the latter a variable length instruction set, unfortunately x86 falls into the realm of the latter.
Atom's slow decoding path does not include any speculative decoding. The instructions are sequenced manually, meaning that each bit is looked at (which takes time) but the instruction is guaranteed to be decoded properly. The instruction is also tagged so that the next time it comes through it can be sent through the fast path.
The fast path obviously employs some speculative decoding and is aided by the tag bit that's set after an instruction goes through the slow path. The slow path yields 1 instruction every 3 clocks, while the fast path can produce 2 instructions every clock.
As Intel learned with Banias (Pentium M), the power penalty for incorrect speculation is unacceptable in a device running on a battery. You'll see a number of tradeoffs where speculative performance tricks are sacrificed in order to maintain low power operation with the Atom processor.
46 Comments
View All Comments
highlandsun - Thursday, April 3, 2008 - link
With all due respect to Fred Weber, with Atom at 47 million transistors, it's pretty obvious that the 10% figure for X86 ISA compatibility is not negligible, particularly in this performance-at-absolute-minimum-power space. Anybody using X86 in tiny embedded systems is automatically giving up a chunk of their power budget that someone using a cleaner instruction set encoding can apply directly to useful work. And as the previous poster already pointed out - source code portability is the only thing that matters to application developers, and that's a non-problem these days. Using the X86 instruction set encoding is stupid. Using it on a low-power-budget device is suicide.Jovec - Thursday, April 3, 2008 - link
I don't think the 10% reference meant 10% of all chips, but rather 10% of the current chip at the time the statement was made. In other words, x86 instruction decoding requires (roughly) a fixed amount of transistors for any chip, so the smaller the die size and larger the transistor count, less and less space is devoted to it.highlandsun - Thursday, April 3, 2008 - link
Yes, that's obvious. And it's also obvious that Atom at 47 million transistors is paying a greater proportionate cost than Core2 Duo at 410 million transistors. In 2002 when Fred made that statement, AMD's current chip was the AthlonXP Thoroughbred, with about 37 million transistors. At the same time the Pentium 4 had 55 million. Put in context, I'd guess that the Atom at 47M vs P4 at 55M has more than 10% of its resources devoted to X86 decoding.Also, Fred's statement in 2002 didn't take into account the additional complexity introduced by the AMD64 instruction extensions, where now a single instruction may be anywhere from 1 to 16 bytes long. Given that you're doing a completely clean ground-up chip design in the first place, it would have made more sense (from both a power budget and real estate perspective) to design a clean, orthogonal, uniform-length encoding at the same time.
Cross-platform ABI compatibility is stupid in the context they're aiming for; nobody is going to run their PC version of Crysis or MSWord on their cellphone. All that matters is API compatibility. With a consistent API, you can still run a separate binary translator if you really really want to move a desktop app to your mobile device but in most cases it would be a bad idea because a desktop app is unlikely to take advantage of power-saving APIs that would be important on a mobile. I.e., most of the time you're going to want purpose-built mobile apps anyway.
floxem - Tuesday, April 15, 2008 - link
I agree. But it's Intel. What do you expect?maree - Thursday, April 3, 2008 - link
I dont think MS will be ready before Windows 7 is released, which is another 3-5 years... and might coincide with Moorestown. Microsoft started work on WindowsLite only after releasing Vista. Vista is bloatware as of now. As of now MS has to rely on crippled versions of XP and Vista like starter and home, which is not very ideal.Apple and Linux are going to have a free run till then...
TA152H - Wednesday, April 2, 2008 - link
Bringing up the Pentium is a little strange, because the whole market is completely different.The Pentium wasn't supposed to be for everyone when it came out. The processor market was different back then where previous generations lasted a long, long time. The Pentium wasn't supposed to replace the 486 right away, or even quickly, and being huge and a terrible power hog was acceptable because the initial iteration was just for a very small group of people who absolutely needed it. The original Pentium had a lot of problems, and struggled badly to reach 66 MHz, so they sold most of their processors at 60 MHz. The second generation was intended more for mainstream.
Nowadays the latest generation replaces the earlier much more quickly, and has to cover more market segments more quickly. I still remember IBM releasing new machines for the 8086 in 1987. That's 9 years after the chip was made. It's just a different market.
The Pentium is nothing like the Silverthorne though, and it's a strange comparison. The Pentium executed x86 instructions, it wasn't decoupled. It also had both pipes, the U and V, lockstepped, which is limitation the Silverthorne doesn't have.
Saying the Pentium Pro was the first processor that allowed out of order processing is strange indeed. The only other processor this would have made sense with was the Pentium, since it was the only previous processor that was superscalar. So, they only made one in order processor, and then went to out of order with the next. It's difficult to see the extrapolation from this that it will be five years or more before Silverthorne goes out of order. It might be that long, but the backwards reference shouldn't be used to back that; it does more to contradict it.
Anand Lal Shimpi - Wednesday, April 2, 2008 - link
The Pentium reference was merely to show that what was once a huge, 300mm^2 design could now be built on a much, much smaller scale. And starting from scratch it's now possible to build something in-order that's significantly faster.The Pentium was an obvious comparison given that it was Intel's last two-issue in-order design, but I didn't mean to imply anything beyond that.
It won't be too long before we'll be able to have something the speed of a Core 2 in a similarly small/cool running package as well :)
Take care,
Anand
fitten - Wednesday, April 2, 2008 - link
I remember back in the days of the Mac FX we talked about 'what ifs' like making a 6502 with the (then) modern process technologies and how fast would it run. I wonder what about now :)crimson117 - Wednesday, April 2, 2008 - link
I am SO going to hold you to that! But I can only hope "won't be long" will mean within 12 months rather than within 12 years :P
Especially after my fiasco mounting a Freezer 7 Pro on an Abit IP35-E, I'd love if a heatsink weren't even necessary.
Anand Lal Shimpi - Wednesday, April 2, 2008 - link
12 months won't be a reality unfortunately :) But look at it this way, the first Pentium M came out in 2003? And 5 years later we're able to have somewhat comparable performance with the Atom processor.I'm really curious to see what happens with Atom on 32nm...