AMD in Consumer Electronics
The potential of Fusion extends far beyond the PC space and into the embedded space. If you can imagine a very low power, low profile Fusion CPU, you can easily see it being used in not only PCs but consumer electronics devices as well. The benefit is that your CE devices could run the same applications as your PC devices, truly encouraging and enabling convergence and cohabitation between CE and PC devices.
Despite both sides attempting to point out how they are different, AMD and Intel actually have very similar views on where the microprocessor industry is headed. Both companies have stated to us that they have no desire to engage in the "core wars", as in we won't see a race to keep adding cores. The explanation for why not is the same one that applied to the GHz race: if you scale exclusively in one direction (clock speed or number of cores), you will eventually run into the same power wall. The true path to performance is a combination of increasing instruction level parallelism, clock speed, and number of cores in line with the demands of the software you're trying to run.
AMD has been a bit more forthcoming than Intel in this respect by indicating that it doesn't believe that there's a clear sweet spot, at least for desktop CPUs. AMD doesn't believe there's enough data to conclude whether 3, 4, 6 or 8 cores is the ideal number for desktop processors. From our testing with Intel's V8 platform, an 8-core platform targeted at the high end desktop, it is extremely difficult finding high end desktop applications that can even benefit from 8 cores over 4. Our instincts tell us that for mainstream desktops, 3 - 4 general purpose x86 cores appears to be the near term target that makes sense. You could potentially lower the number of cores needed if you combine other specialized hardware (e.g. an H.264 encode/decode core).
What's particularly interesting is that many of the same goals Intel has for the future of its x86 processors are in line with what AMD has planned. For the past couple of IDFs Intel has been talking about bringing to market a < 0.5W x86 core that can be used for devices that are somewhere in size and complexity between a cell phone and an UMPC (e.g. iPhone). Intel has committed to delivering such a core in 2008 called Silverthorne, based around a new micro-architecture designed for these ultra low power environments.
AMD confirmed that it too envisions ultra low power x86 cores for use in consumer electronics devices, areas where ARM or other specialized cores are commonly used. AMD also recognizes that it can't address this market by simply reducing clock speed of its current processors, and thus AMD mentioned that it is working on a separate micro-architecture to address these ultra low power markets. AMD didn't attribute any timeframe or roadmap to its plans, but knowing what we know about Fusion's debut we'd expect a lower power version targeted at UMPC and CE markets to follow.
Why even think about bringing x86 cores to CE devices like digital TVs or smartphones? AMD offered one clear motivation: the software stack that will run on these devices is going to get more complex. Applications on TVs, cell phones and other CE devices will get more complex to the point where they will require faster processors. Combine that with the fact that software developers don't want to target multiple processor architectures when they deliver software for these CE devices, and by using x86 as the common platform between CE and PC software you end up creating an entire environment where the same applications and content can be available across any device. The goal of PC/CE convergence is to allow users to have access to any content, on any device, anywhere - if all the devices you're trying to gain access to content/programs on happen to all be x86, it makes the process much easier.
Why is a new core necessary? Although x86 can be applied to virtually any market segment, the range of usefulness of a particular core can extend throughout an order of magnitude of power. For example, AMD's current desktop cores can easily be scaled up or down to hit TDPs in the 10W - 100W range, but they would not be good for hitting something in the sub-1W range. AMD can easily address the sub-1W market, but it will require a different core from what it addresses the rest of the market with. This philosophy is akin to what Intel discovered with Centrino; in order to succeed in the mobile market, you need a mobile specific design. To succeed in the ultra mobile and handtop markets, you need an ultra mobile/handtop specific processor design as well. Both AMD and Intel realize this, and now both companies have publicly stated that they are doing something about it.
The potential of Fusion extends far beyond the PC space and into the embedded space. If you can imagine a very low power, low profile Fusion CPU, you can easily see it being used in not only PCs but consumer electronics devices as well. The benefit is that your CE devices could run the same applications as your PC devices, truly encouraging and enabling convergence and cohabitation between CE and PC devices.
Despite both sides attempting to point out how they are different, AMD and Intel actually have very similar views on where the microprocessor industry is headed. Both companies have stated to us that they have no desire to engage in the "core wars", as in we won't see a race to keep adding cores. The explanation for why not is the same one that applied to the GHz race: if you scale exclusively in one direction (clock speed or number of cores), you will eventually run into the same power wall. The true path to performance is a combination of increasing instruction level parallelism, clock speed, and number of cores in line with the demands of the software you're trying to run.
AMD has been a bit more forthcoming than Intel in this respect by indicating that it doesn't believe that there's a clear sweet spot, at least for desktop CPUs. AMD doesn't believe there's enough data to conclude whether 3, 4, 6 or 8 cores is the ideal number for desktop processors. From our testing with Intel's V8 platform, an 8-core platform targeted at the high end desktop, it is extremely difficult finding high end desktop applications that can even benefit from 8 cores over 4. Our instincts tell us that for mainstream desktops, 3 - 4 general purpose x86 cores appears to be the near term target that makes sense. You could potentially lower the number of cores needed if you combine other specialized hardware (e.g. an H.264 encode/decode core).
What's particularly interesting is that many of the same goals Intel has for the future of its x86 processors are in line with what AMD has planned. For the past couple of IDFs Intel has been talking about bringing to market a < 0.5W x86 core that can be used for devices that are somewhere in size and complexity between a cell phone and an UMPC (e.g. iPhone). Intel has committed to delivering such a core in 2008 called Silverthorne, based around a new micro-architecture designed for these ultra low power environments.
AMD confirmed that it too envisions ultra low power x86 cores for use in consumer electronics devices, areas where ARM or other specialized cores are commonly used. AMD also recognizes that it can't address this market by simply reducing clock speed of its current processors, and thus AMD mentioned that it is working on a separate micro-architecture to address these ultra low power markets. AMD didn't attribute any timeframe or roadmap to its plans, but knowing what we know about Fusion's debut we'd expect a lower power version targeted at UMPC and CE markets to follow.
Why even think about bringing x86 cores to CE devices like digital TVs or smartphones? AMD offered one clear motivation: the software stack that will run on these devices is going to get more complex. Applications on TVs, cell phones and other CE devices will get more complex to the point where they will require faster processors. Combine that with the fact that software developers don't want to target multiple processor architectures when they deliver software for these CE devices, and by using x86 as the common platform between CE and PC software you end up creating an entire environment where the same applications and content can be available across any device. The goal of PC/CE convergence is to allow users to have access to any content, on any device, anywhere - if all the devices you're trying to gain access to content/programs on happen to all be x86, it makes the process much easier.
Why is a new core necessary? Although x86 can be applied to virtually any market segment, the range of usefulness of a particular core can extend throughout an order of magnitude of power. For example, AMD's current desktop cores can easily be scaled up or down to hit TDPs in the 10W - 100W range, but they would not be good for hitting something in the sub-1W range. AMD can easily address the sub-1W market, but it will require a different core from what it addresses the rest of the market with. This philosophy is akin to what Intel discovered with Centrino; in order to succeed in the mobile market, you need a mobile specific design. To succeed in the ultra mobile and handtop markets, you need an ultra mobile/handtop specific processor design as well. Both AMD and Intel realize this, and now both companies have publicly stated that they are doing something about it.
55 Comments
View All Comments
sprockkets - Friday, May 11, 2007 - link
Yeah, and the cheapest CPU I ever bought was an AMD Sempron for $29.goinginstyle - Friday, May 11, 2007 - link
So with your logic, if the reviews about Barcelona end up being positive and glowing then we know AMD paid off the reviewers?R3MF - Friday, May 11, 2007 - link
I am delighted to hear that AMD is on the bounce, as i have always cheered for them.With the exception of my current C2D PC, i have always bought AMD rigs:
1.2GHz Thunderbird
1.7GHz Thoroughbred
2.0GHz Athlon 64
2.0GHz Athlon X2
So no-one will be more than happy than I to be able to return to the fold, with a shiny new AMD quad-core.
However, if you expect me to buy AMD powered chipsets and graphics cards, then AMD had better pull their socks up on linux support.
I buy nvidia chipsets and graphics cards not because they make better hardware than AMD/ATI, but because i know that i have excellent support in the form of BOTH windows and linux driver support.
Sort that out and I may become an entirely AMD devotee.
If AMD sticks with cack linux drivers along with scuppering nVidia support, then I will wave goodbye to AMD and buy a second Intel/nVidia rig in Autumn this year.
Best of luck AMD, I want you to succeed.
MrJim - Friday, May 11, 2007 - link
Excellent article Anand! Feels very "honest", i think many big corporations must change the way the think about transparency towards the public. Great work.Viditor - Friday, May 11, 2007 - link
Nice article Anand...One point, you stated "By the middle of this year AMD's Fab 36 will be completely transitioned over to 65nm"...
Not to pick nits, but didn't AMD just recently announce that all wafer starts were now 65nm at Fab 36? (or are you speaking of wafer outs...?)