Media Encoding Performance & Power Consumption

The absolute performance crown under our WME test continues to belong to the E6600, followed by the X2 5000+, but after that it's a fairly close race between the contenders. The E6400 and X2 4800+ are basically equal in performance, with the 4600+ following closely. At the low end of the spectrum, the E6300 outperforms the X2 3800+ but albeit with much higher power consumption.

If we look at absolute power consumption, the X2 3800+ EE SFF can't be beat. Although it's outperformed by every other chip in the test, it consumes at least 20 fewer watts during the benchmark. Power consumption for the rest of the chips is basically equal, with the 90nm X2 5000+ sticking out as the only sore thumb.

Our E6300 sample's combination of high operating voltage and low performance relative to the competition results in it having the worst performance per watt out of the group. The X2 3800+ SFF comes in second to last in this metric due to its lower performance. Meanwhile, the E6600 places first, the 65nm X2 5000+ is in second place, closely followed by Intel's Core 2 Duo E6400 and the 65nm X2 4800+.

Windows Media Encoder Advanced Profile Performance

Windows Media Encoder Power Usage

Windows Media Encoder Performance per Watt

DivX performance favors Intel much more than our WME test, as the top three performance spots go to Intel. There's no performance difference between AMD's 90nm and 65nm chips in this test as both 5000+ CPUs are tied at 6.66 fps.

The absolute power advantage goes, once again, to the X2 3800+ EE SFF. Our 65nm 4800+ sample draws a bit less power than the 5000+ and even manages to draw less than the 90nm 4600+ EE. Unfortunately with no great power advantages and mid-range performance, the top three in the performance per watt category belong to Intel.

DivX 6.4 with Xmpeg 5.0.3 Performance

DivX 6.4 with Xmpeg 5.0.3 Power Usage

DivX 6.4 with Xmpeg 5.0.3 Performance per Watt

The Test Media Encoding Performance & Power Consumption - Continued
Comments Locked

52 Comments

View All Comments

  • Spoelie - Thursday, December 21, 2006 - link

    This is not the first time this has happened, it may be easy to forget, but do you guys remember the thoroughbred?

    Thoroughbred A was the first 180nm to 130nm shrink and had a hard time reaching the speeds the mature 180nm cores were getting. It wasn't till AMD added another layer to the core (Thoroughbred B) that we saw the expected speedups from a die shrink.
  • PetNorth - Thursday, December 21, 2006 - link

    Anand:

    Why don't you set manually the voltage, to know really what's the improvement with 0.65 transition?
    1.30v to compare it with 5000+ 90nm, and 1.25v to compare it with 4600+ EE 0.90nm.
    It would be a good thing IMO.
  • yyrkoon - Thursday, December 21, 2006 - link

    There are already people who believe that odd numbered multipliers offer worse performance compared to even numbered multipliers. I cant help but wonder why AMD chose to start implementing floating point multipliers now. The first thing that comes to mind, is maybe to refine their pricing ? Although, I've never really noticed much performance (if any) difference using odd vs even numbered multipliers, I can not help but wonder if floating point multipliers will play a factor in performance.
  • Regs - Thursday, December 21, 2006 - link

    AMD has been stepping in baby steps in their innovation merits. Ever since the IMC and the enhancements from K7 to K8 it seems like they improve little by little. I hope this gives them a rude awakening to how competitive the market can or could be in future. If they did it before they can do it again.

    As for the transition to 65nm, it was no surprise that these parts could not over clock very well. The K8 is showing its age and I think there are no more ways you can breathe life back into it especially when Core Duo is out in the market.
  • mino - Thursday, December 21, 2006 - link

    Why awekening, and why rude? The fact is AMD kept PARITY with intel on power AND performance inthe lower end with 90nm!!! part with Intel beeing at 65nm for a year allredy!
    In other words, When AMD's 90nm process is FAR better that Intel's ever was. Same happened with 130nm. Two words: SOI,APM.
    No confusion, all thi means no one should avaluate AMD vs. Intel on process_used base. Simply put, as of now(at stock) Intel rules on perf&power while AMD rules on idle_power and price(up to 4200+/E6300 combo).
  • IntelUser2000 - Thursday, December 21, 2006 - link

    quote:

    The impact of higher voltages on power consumption also applies to Intel as well. As you will see in our power comparison, in a number of cases our Core 2 Duo E6300 required even more power than the E6600 we tested last time. The reason being that our E6300 sample runs at a core voltage of 1.325V vs. 1.2625V for our E6600 sample. Just things to keep in mind as you look at the power results over the next few pages.


    Intel bins Core 2 Duo by power consumption.
  • xsilver - Thursday, December 21, 2006 - link

    just to clarify further; all e6600's will have lower stock voltages than e6400's and all e6400's will have lower stock voltages than e6300's?

    at both idle and load?

    how successful are the conroes at undervolting?
  • Accord99 - Thursday, December 21, 2006 - link

    Pretty good, my week 25 E6600 is stable at 2.6GHz/1.1v (My P5B-dlx doesn't go any lower) with dual-P95. The heat output is easily cooled passively by a Scythe Ninja.

    Here's a thread, one person has a E6600 that does 2.4@/~1v

    http://www.xtremesystems.org/forums/showthread.php...">http://www.xtremesystems.org/forums/showthread.php...
  • blackbrrd - Thursday, December 21, 2006 - link

    I have seen a E6600 running at 1,0v at load... It was obviously very cool running :)

    My E6400 is running at 1,15v at idle (2133MHz) and 1,25v at load (2133MHz)

    Power saving features were off in both instances...
  • haugland - Thursday, December 21, 2006 - link

    AMD win in one aspect...

    I you really consider power consumption to be important, it is much more important to look at idle power consumption than power consumption at full load. Most business PCs idle a lot of the time, and AMDs CPUs are much better at saving power at idle.

    EIST was designed for P4, and for a 3+ GHz P4 it makes sense to drop the multiplier to 6. However when the E6300 normally run at a multiplier of 7, you don't get much of a power saving by dropping the multiplier to 6. AMD C'n'Q allows for much lower settings.

Log in

Don't have an account? Sign up now