SQL Stress Tool Benchmark

Our first benchmark was custom-written in .NET, using ADO.NET to connect to the database. The AnandTech Forums database, which is over 14GB in size at the time of the benchmark, was used as the source database. We'll dub this benchmark tool "SQL Stress Tool" for the purposes of discussing what it does. We have done some updates to the tool since we first used it; it now supports Oracle, and MySQL. We also adjusted the test time for this test and future tests to 20 minutes. The reason for this was to ensure that we used as much memory as possible for future planned 64 bit tests.


Click to enlarge.

SQL Stress allows us to specify the following: an XML based workload file for the test, how long the test should run, and how many threads it should use in which to load the database. The XML workload file contains queries that we want executed against the database, and some random ID generator queries that populate a memory resident array with ID's to be used in conjunction with our workload queries. The purpose of using random ID's is to keep the test as real-world as possible by selecting random data. This test should give us a lot of room for growth, as the workload can be whatever we want in future tests.

Example workload:


    Select1
    select count(iuserid) as usercount from ftdb_forumusers where iforumid = 1


    Select2
    select count(u.iuserid) as currusercount from ftdb_users u,ftdb_forumusers fu where fu.iforumid = 1 and u.iuserid = fu.iuserid and dtlastvisiteddate > '[q]qGetLastVisitDate[/q]'


Example Random ID Generator:


    qGetLastVisitDate
    select dtlastvisiteddate,newid() as ldate from ftdb_users where dtlastvisiteddate is not null order by ldate


The workload used for the test was based on every day use of the Forums, which are running FuseTalk. We took the most popular queries and put them in the workload. Functions, such as reading threads and messages, getting user information, inserting threads and messages, and reading private messages, were in the spotlight. Each reiteration of the test was run for 20 minutes, with the first being from a cold boot. SQL was restarted in-between each test that was run consecutively.

The importance of this test is that it is as real world as you can get; for us, the performance in this test directly influences what upgrade decisions we make for our own IT infrastructure.

Web Tests - FuseTalk .NET SQL Stress Results
Comments Locked

144 Comments

View All Comments

  • liebremx - Thursday, April 21, 2005 - link


    Anand, great reading as always.

    I have an observation:

    On the 'Development Performance - Compiling Firefox' section you write
    "This particular test is only single threaded, ..."

    Why not launch a multithreaded build?

    "make -j3 -f client.mk build_all"
  • Jalf - Thursday, April 21, 2005 - link

    Makes good sense for AMD to keep their (server) dualcore chips pricey. AMD has limited manufacturing capacity, and they have best singlecore solution. In other words, they might as well keep the dualcore prices high, to a) make more money in cases where people are willing to fork over lots of money, and b) keep people who are on a budget interested in their singlecore offerings, at least until their new fab goes online.
  • GentleStream - Thursday, April 21, 2005 - link

    I have some comments about the Firefox compile test. First, thanks alot for including it. Now I have some comments about it. First, you are using GNU make and it supports parallel compiles. So, you should be able to replace the line:

    make -f client.mk build_all

    with the line:

    make -j 2 -f client.mk build_all

    to perform a parallel compile using 2 processors. The -j option specifies how many processors or threads you are using. You can do parallel compiles on a single processor machine as well as multi-processor or multi-core machines. It is often the case that using -j 2 or -j 3 on a single processor machine will give the best results because of it's allowing the overlaping of cpu computations and I/O.

    You don't say whether you did a debug or optimized build. I would recommend doing both the debug and optimized builds and reporting the results of both. When doing parallel optimized compiles, you may want to make sure you are not swapping although for the server tests it looks like you have plenty of memory - 4 GBytes. I did not see immediately how much memory you were using for the X2 tests. Anyway, I would recommend doing both debug and optimized compiles with -j n where n is 1, 2, 3, and 4 or perhaps just 1, 2, and 4. Since compiles are essential to development work and also embarassingly parallel, this should provide a really good comparison of the multitasking capabilities of these systems.

    Hope you can do this or at least some of it and thanks alot for adding a really good compile test to your test suite.

    Dave
  • michaelpatrick33 - Thursday, April 21, 2005 - link

    The server market is where AMD is going headed to get large margins in their chips. With Supermicro joining the AMD camp (they must have seen the performance of the Opteron dualcore, blinked their eyes and said, "we're in") Dell is left alone holding Intel only product lines. Intel will not have a response on the server front until Q1 2006. That is troubling for Intel because it give AMD six months of market buildup and Fab36 time to come online and increase volume tremendously. It should be interesting.

    Imagine a 4800+ on a 939 DFI board running at 2-2-2-8 1t timings versus the P4 Extreme dualcore. Drooling just thinking about having either processor, but especially the AMD
  • erwos - Thursday, April 21, 2005 - link

    "AMD would probably have problems delievering a lower cost dual core in quantities ."

    This is exactly it. Why should AMD let demand outstrip supply? Just jack up the price until you've got just enough demand to consume your supply.

    I mean, yes, I'd love an Athlon64 X2 5000+ with 1mb of cache for ~$250, but that's life. AMD stockholders should be pleased with this decision.

    There's also the impending move to socket M2 to consider... the Athlon64 X2 makes sense for people with very low-end A64's, but M2 is going to be the better upgrade path for FX and/or 3800+ users. I would be surprised to see any 939 Athlon64's past 5200+.
  • eetnoyer - Thursday, April 21, 2005 - link

    While our desires as desktop users are for high volumes of X2s at low prices, we have to balance that with what AMD as a company needs to survive...money. AMD is currently capacity constrained with regard to dual-core CPUs with only Fab30. They have entered into agreements with both IBM and Chartered for additional capacity (probably on the lower end chips), but that won't come online until late this year. Just before production starts to ramp at Fab36.

    In the meantime, AMD has stated that their order of priority goes Server -> Mobile -> Desktop with the profitability motive in mind. For most users that will be heavily into the multi-tasking benefits of dual-core CPUs, spending $5xx for the low-end X2 vs $1000 for the PEE 840 will be a no-brainer. Seeing how that is a small minority of users, AMD can reasonbly supply the demand for them while still maintaining the highlest level of availability of dual-core Opterons at much better ASPs. Remember that AMD wants to capture as much market share in the server market as possible while Intel has no response.

    As a share-holder, I hope that the demand for dual-core Opteron is deafening based on the incredible price/performance ratio (thus limiting their ability to produce X2 in high quantity). As a middle-of-the-road desktop user, I'm quite content with my mildly OC'd A64 for the next year or two.
  • ksherman - Thursday, April 21, 2005 - link

    w00t! Ill have to read it later tho...
  • MrHaze - Thursday, April 21, 2005 - link

    Certainly impressive.

    I think it is important to remember that the "Athlon64 X2" was actually an Opteron running ECC RAM at 2T on a less-than-stable motherboard. I think it is best think of this as a comparison of Intel's dual cores, AMD's single cores, and a hog-tied Athlon64 X2.
    Makes you wonder how an actual X2 with fast memory on a fast motherboard will perfom.

    Regardless, I'm really excited about the upgrade potential, and I hope that AMD sticks with socket 939 for a long while.

    Mr.Haze
  • kirbalo - Thursday, April 21, 2005 - link

    Great review Anand...Thanks for fixing your gaming bar charts...they were wacked before!

  • Tapout1511 - Thursday, April 21, 2005 - link

    Sure would have been nice if they had included a single core A64 at 2.2GHz w/ 1MB cache (3500+ right?) to illustrate instances where the extra core was useful and when it wasn't.

    Oh well.

Log in

Don't have an account? Sign up now